
Group Decis Negot (2016) 25:537–565
DOI 10.1007/s10726-015-9451-9

A Mixed-Data Evaluation in Group TOPSIS
with Differentiated Decision Power

Hsu-Shih Shih1

Published online: 18 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This main objective of this paper is to provide decision support for mixed
data in group Technique for Order Preference by Similarity to Idea Solution (TOP-
SIS) with differentiated decision power. We use a signum function to compare the
ordinal performance of alternatives on any qualitative criterion, or the partial infor-
mation provided by decision makers. The proposed process for ordinal information is
uniformly coherent with the traditional TOPSIS steps, preserving the characteristic of
distance-based utilities. Ordinal weights are also considered herein, and the decision
power of the group members is formulated by their weights under an agreement in
the group. Two examples demonstrate that the proposed approach has some benefits
and achieves robustness with two types of sensitivity analyses. Some discussions and
their limitations to the approach are also provided.

Keywords TOPSIS · Ordinal information · Decision power · Group decision
making · Mixed-data

1 Introduction

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a rather
straightforward technique in dealing with multi-criteria or multi-attribute decision
making (MCDM/MADM) problems that have cardinal information (Hwang and Yoon
1981), and it is popularly practiced in theAsia-Pacific region (Shih et al. 2007). Behind
the use of this technique, there exist many assumptions that are sometimes hard to
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meet. One case occurs when there are often insufficient metric data for an evaluation.
If there exists ordinal information in making a decision, which is easier to obtain, then
we only require partial information from decision makers (DMs). Ordinal information
is argued to be more reliable and available than cardinal (continuous) information
(Larichev 1992), but few works in the literature directly address ordinal or qualitative
information in the TOPSIS process without considering fuzzy or interval values. This
study deals with the problem of ordinal information that exists in group TOPSIS,
which is a generalization of TOPSIS in a group decision making environment. The
differentiated decision power in group TOPSIS is addressed as well. Hence, we expect
a coherent and complete procedure for a mixed-data multiple-criteria group decision
support with differentiated decision power.

The basic concept of TOPSIS is in a straight line. It originates from the concept of
a displaced ideal point from which the compromised solution has the shortest distance
(Belenson andKapur 1973; Zeleny 1974). Hwang andYoon (1981) recommended that
the ranking of alternatives is based on the shortest distance from the (positive) ideal
solution (PIS) and the farthest distance away from the negative ideal solution (NIS)
or anti-ideal solution in an n-dimensional Euclidean space. TOPSIS simultaneously
considers these distances to both PIS and NIS and then ranks a preference order
on account of their relative closeness, which is a combination of these two distance
measures. Although there are multiple versions, the core thinking of the technique is
that the distance function represents the DMs’ preferences or utilities.

Because MCDM is a practical tool for selecting and ranking a number of alterna-
tives, its applications are numerous. TOPSIS is deemed as a major analytic technique
and has been successfully applied in numerous areas (Shih et al. 2007). Behzadian
et al. (2012) collected 266 papers since 2000 and inferred that there are nine major
application areas of TOPSIS: (1) supply chain management and logistics, (2) design,
engineering and manufacturing systems, (3) business and marketing management, (4)
health, safety, and environment management, (5) human resource management, (6)
energy management, (7) chemical engineering, (8) water resources management, and
(9) other topics. Of these TOPSIS applications, most are combined with other tech-
niques, e.g., fuzzy sets (Langroudi et al. 2013), interval information (Tsaur 2011),
analytic hierarchy/network process (AHP/ANP) (Torfi et al. 2010), entropy methods
(Hung and Chen 2010), and mathematical programming (Garcia et al. 2010).

Since groupTOPSIS is amajor interest in the literature,we have to examineTOPSIS
used in a group decision environment. Most research works involve fuzzy or interval
data. Yue (2013) recently organized 15 papers for preference aggregation in group
TOPSIS. Eleven of them are related to the manipulation of fuzzy or interval things,
and only a few deal with crisp data. Two debates have arisen if a paper involved with
fuzzy or interval data has a technical advantage compared to traditional approaches or
if it can better match the decision making environment. The former is out of the scope
of this study, while for the latter some scholars have found clues on the issue of the
decision making environment in the past. Eckenrode (1965) mentioned that ranking
by order is not only the easiest, but also is the most reliable. Kirkwood and Sarin
(1985) also supported the argument for the ease of reaching an agreement with some
kind of confidence. This situation could commonly happen in a group with a small
number of DMs. Hence, from a practical aspect, this study investigates an uncovered
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area, i.e., group TOPSIS with partial information. Decision power is also posted for
a possible better formulation for group decision support. Both issues motivate the
present research.

The paper is organized as follows. In the next section the literature survey lists
some basic works on ordinal information for decision making and decision power in
multi-criteria group decision making. Section 3 focuses on the proposed integrated
model for group TOPSIS in a step-by-step fashion. We then give illustrative examples
with sensitivity analyses. Section 4 provides some discussions with their limitations.
The final section draws concluding remarks.

2 Literature Survey

Many works have utilized TOPSIS as a tool for decision making, but few have pre-
sented the essential steps for tackling ordinal or qualitative information in a crisp
domain. Most studies treated this information as pseudo-metric data. Hwang and
Yoon (1981) suggested that a qualitative criterion could be converted into an interval
scale by using a bipolar scale. For instance, decision makers might choose a 10-point
scale and calibrate the qualitative attribute into assigned values. For the benefit cri-
teria, 10 points might be the maximum value and 0 points the minimum value for
performance measures, with the reverse direction of values measuring the cost crite-
ria. Traditional TOPSIS thus could deal with both qualitative and quantitative criteria.
Goh et al. (1996) utilized a 1- to 9-point scale for the level of achievement of the qual-
itative attribute in a robot selection problem. Parkan and Wu (1997) used a 5-point
Likert scale for a process selection problem. No matter which scale is adopted, even
for a 0–1.0 normalized scale (Rao 2006), the designed scales or categories are often
believed to represent an interval level of measurement, and the above scales seem
to be assigned in a subjective way. For instance, one conservative DM might think
number 7 is good enough for evaluating the benefit criteria, whereas the other might
assign 9 to the same case in a group decision environment. There should be a way for
a more objective evaluation for group decision making. Herein the linguistic variables
are commonly thought to have the same meanings for representing performances of
the qualitative criteria.

In AHP, pairwise comparisons through a 9-point fundamental scale are used to
manage tangible (objective, quantitative) and non-tangible (subjective, qualitative)
factors (Saaty 1980), but most works employ the process of pairwise comparisons to
obtain weights for criteria, e.g., Shyur and Shih (2006), in order to support TOPSIS. It
appears that no work in the literature has used AHP to handle ordinal information for
the TOPSIS process. Many other MCDM techniques have been proposed for dealing
with qualitative criteria. Hinloopen et al. (1983) listed 16 examples of such methods.
Voogd (1983) classified some of these into two categories: pure qualitative data and
mixed qualitative and quantitative data. The former was further divided into frequency
approaches and scaling models. The latter listed the geometric scaling model and
three other analytical mixed-data evaluation techniques integrated into the EVAMIX
(multicriteria EVAlation with MIXed qualitative and quantitative data) model (Voogd
1983). For mixed data, a debate arose as to whether the conversion of qualitative
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measures into quantitative form is worth it or not (Larichev et al. 1995) and concluded
that some quantitative weighting estimates introduce inaccurate representations of a
decision maker’s preference.

In a similar vein, Xu and Lamond (2001) suggested a ranking procedure based on
the distance between partial pre-orders without the need of conversion. Nonetheless,
when handling mixed data within existing techniques, conversion seems unavoidable
due to coherence with the quantitative data. For example, simple multi-attribute rating
technique (SMART) allows decision makers (individual or group) to quantify qualita-
tive information that can be categorized through performance scores (Edwards 1977).
Measuring attractiveness by a categorical based evaluation technique (MACBETH)
employs a non-numerical interactive questioning procedure, requesting a qualitative
judgment about the difference of attractiveness, in order to build a quantitative value
(Bana e Costa and Chagas 2004). Hence, a conversion of ordinal information to car-
dinal information in TOPSIS seems similarly possible.

Transforming ordinal information calls for further consideration. For instance, qual-
itative concordance analysis (Van Delft and Nijkamp 1977) utilizes a nominal scale
as the basis for evaluation. The numerical interpretation method relaxes the limited
number of ordinal levels for a wide range of representation (Voogd 1983). EVAMIX
uses a signum function for measuring the dominance of any two alternatives on any
criterion and weights these dominances together with cardinal evaluations (Voogd
1982). According to the guidelines of the MCDM methods by Guitouni and Martel
(2006), EVAMIX and TOPSIS are grouped into the category of a single synthesizing
criterion. Consequently, the essence of the process of EVAMIX should be able to help
TOPSIS handle ordinal information, by proposing a coherent, simple, and operational
procedure. While EVAMIX concentrates on the distance of the difference among the
performance measures, TOPSIS reasons the distance between the one performance
measure and PIS/NIS to be DMs’ preference. Table 1 summarizes the comparisons of
AHP, EVAMIX, and TOPSIS. Note that herein we do not take into account stochas-
tic dominance (Lahdelma et al. 2003), which can be left for future study. Moreover,
Xu et al. (2014) proposed a distance-based aggregation approach for group decision
making with interval preference orderings, which minimizes the weighted arithmetic
averaging operator of the interval preference of decisionmakers. It has no close relation
with TOPSIS.

Another issue about ordinal information on criteria weights has not been discussed
in detail. ManyMCDM techniques, especially in compensatory models, require infor-
mation about the relative importance of each criterion (Hwang and Yoon 1981).
Elicitation of criteria weights can roughly be classified as direct and indirect estima-
tions (Horsky and Rao 1984). The former is the main interest due to its straightforward
support of TOPSIS. Barron and Barrett (1996) examined four approximate rank-order
weights—rank order centroid (ROC), rank sum, rank reciprocal, and equal weights—
and found that ROC weights are the most accurate and efficacious based on their
designed simulation study. Alfares and Duffuaa (2009) reviewed past works that
inferred criteria weights from ranks and proposed a method to determine the relative
weights for any set of criteria. Although there are many other methods for assigning
a weight from ordinal information, e.g., distance-metric methodology by Jones and
Mardle (2004) and ordered weighting averaging (OWA) method by Ahn (2011), this
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study chooses ROC weights, because they need much less input from DMs as con-
cluded by Olson and Dorai (1992). However, we shall carry out an extra sensitivity
analysis on weights to check the model’s stability on ranks.

The third interest relates to group aggregation with differentiated decision power
in multi-criteria group decision. Decision power is defined as the potential ability
of a person or a group to exercise control or influence on another person or group
for the final decision (Griffin and Moorhead 2013). Though there are many forms of
this power, e.g., legitimate power or expertise power, it can be accounted for in the
political or business environment based on the number of votes or the percentages of
shares (Korhonen 1997; Widerén 1994). The decision power of the person can thus
be quantified as his or her relative weight in that group based on his or her position,
expertise, percentages of shares, etc. A differentiated decision power can then be
identified. Ramanathan and Ganesh (1994) classified the approaches of assigning this
weight for decision power as the supra DM approach and the participatory approach.
The former assigns weights by a supra DM, which is usually at the top level of the
organization. For example, Tsui andWen (2014) investigated a selection issue for green
suppliers in a TFT–LCD company, and the company considers the weights of four
stokehold departments as 36, 27, 27, and 10%, respectively, which is determined by
one key department being the supra DM. The latter approach mentions that there exist
different expertises in a group, which can be quantified by interperson comparisons
or discussions among the group members to obtain the their power. This expertise
power can then be simply interpreted as the weight of a member in the group utility
function.

For group aggregation, social choice aims to combine individual opinions, prefer-
ences, interests, or welfares to reach a collective decision, but there is no procedure
for aggregating individual ranking into group ranking without violating some rea-
sonable assumptions (Arrow 1963). From a practical aspect, the aggregation of a
group’s ranking is still possible if compromise and agreement exist in the group,
as it is reached through feedback and discussion among group members (Bezerra
et al. 2014). We observe that many techniques can facilitate a compromise or an
agreement (Hwang and Lin 1987). Baucells and Sarin (2003) developed a group util-
ity function from additive individuals’ utility functions over the multiple attributes,
thus providing the foundation for applying MCDM in a group decision environment.
Group preference is generally aggregated by taking the mean operation of individuals’
preferences.

Ramanathan and Ganesh (1994) utilized the geometric mean and the weighted
arithmetic mean for AHP and also took advantage of another hierarchy for deriving
members’ weights. Forman and Peniwati (1998) discussed several ways to aggre-
gate group information for AHP and proposed weighted arithmetic and geometric
means for aggregating individual judgments and individual priorities. Bernasconi et al.
(2014) further examined empirical properties of group preference aggregation meth-
ods employed in AHP. On the other hand, Barzilai and Lootsma (1997) proposed a
power relation and group aggregation in multiplicative AHP and SMART, however,
their approach has drawn debate over its behavior realism (Korhonen 1997). Van den
Honert (2001) developed two models for obtaining group members’ weights of multi-
plicative AHP and SMART, respectively. For TOPSIS, Yue (2013) collected 15 works
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of preference aggregation in the group TOPSIS whereby most of them utilize arith-
metical and geometric means for group aggregation. Since it seems not many works
explicitly discussed decision power in the group, Baucells and Sarin (2003) offered
some materials for further tackling group TOPSIS with differentiated decision power.
We next suggest a mixed-data model for group TOPSIS with differentiated decision
power.

3 Proposed Model

We first concentrate on the process of ordinal information and then deal with group
aggregation with decision power in group TOPSIS.

3.1 Ordinal Information Process

There are two types of cardinal information involved in group TOPSIS: performance
of alternatives on criteria and the weights of criteria. Most efforts are given toward
measuring the performance on qualitative criteria. For the second part, centroid orROC
weights will be chosen herein for assigning weights to criteria due to their simplicity.

When there is ordinal information of performance measures on criteria, a simple
process is proposed for group TOPSIS. This process considers the dominance of any
alternative, by pairwise comparisons on the performance measure of this alternative
with other alternatives, and sums up the dominances of this alternative with the others
as accumulated dominances.

We present the decision matrix Dk , k = 1, …, K , representing the kth DM as
follows:

Dk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 X2 · · · X j · · · Xn

A1 xk11 xk12 · · · xk1 j · · · xk1n
A2 xk21 xk22 · · · xk2 j · · · xk2n
...

...
... · · · ... · · · ...

Ai xki1 xki2 · · · xki j · · · xkin
...

...
... · · · ... · · · ...

Am xkm1 xkm2 · · · xkmj · · · xkmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

, (1)

where Ai denotes the alternative i , i = 1, . . ., m; X j represents the criterion j ,
j = 1, . . ., n; and the number of quantitative criteria p and the number of qualitative
criteria q are related by p+ q = n. The element of Dk , xki j , indicates the performance
rating of alternative Ai with respect to attribute X j by DM k, k = 1, . . ., K . Note that
there should be K decision matrices for K members of the group.

To further process the performance information of alternatives on qualitative crite-
ria, we express the following qualitative decision matrix, which is a submatrix of the
decision matrix Dk :
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Dk
qual =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X p+1 X p+2 · · · X j · · · Xn

A1 xk1(p+1) xk1(p+2) · · · xk1 j · · · xk1n
A2 xk2(p+1) xk2(p+2) · · · xk2 j · · · xk2n
...

...
... · · · ... · · · ...

Ai xki(p+1) xki(p+2) · · · xki j · · · xkin
...

...
... · · · ... · · · ...

Am xkm(p+1) xkm(p+2) · · · xkmj · · · xkmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×q

, (2)

where there are q qualitative criteria, and their subscripts count from p + 1 to n.
Since the ordinal information of performance measures on criterion j is by a partial

order set, we can compare the orders of the performance measures. Here, the pref-
erence order of xk1 j , x

k
2 j , . . ., x

k
i j , . . ., and xkmj is represented by a function of their

performances as o(xk1 j ), o(x
k
2 j ), . . ., o(x

k
i j ), . . ., and o(x

k
mj ), respectively, on criterion

j for DM k. It is noted that the orders of the performancemeasures are predefined in the
partial order set, and they can be linguistic or semantic terms, or levels of achievement.
Thus, a comparison can be made.

Based on the presentation of the ordinal information process in EVAMIX, we intro-
duce a signum function to count the dominance of the order comparison on each qual-
itative criterion for simplicity. Comparing any two orders of the alternatives, if one is
preferred to the other, then the functionwill give 1; if one is indifferent to the other, then
the function will give 0; if one is inferior to the other, then the function will give −1.

skj

(
o

(
xki j

)
, o

(
xki ′ j

))
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if o
(
xki j

)
� o

(
xki ′ j

)
,

0, if o
(
xki j

)
≈ o

(
xki ′ j

)
,

−1, if o
(
xki j

)
≺ o

(
xki ′ j

)
.

∀i and i ′, i �= i ′, (3)

where both i and i ′ = 1, . . .,m for m alternatives on criterion j . Note that there is no
need to distinguish the criteria of benefits and costs in the above expression since the
comparison is based on the orders that are the preferences in DMs’ minds.

The dominance measure skj (o(x
k
i j ), o(x

k
i ′ j )) is a comparison of the performance

orders of any two alternatives Ai and Ai ′ , respectively, on criterion j for DM k. Thus,
we illustrate a dominance matrix Skj by the following pairwise comparisons on crite-
rion j .

(4)
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The accumulated dominance measure tki j is the summation of the comparison of
the performance of alternative Ai to all other alternatives Ai ′ on criterion j .

tki j =
m∑

i ′=1

skj

(
o

(
xki j

)
, o

(
xki ′ j

))
, i �= i ′,∀ j. (5)

Thus, an accumulated dominance vector on criterion j by DM k is:

Tk
j =

A1
A2
...

Ai
...

Am

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tk1 j
t k2 j
...

tki j
...

tkmj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×1

. (6)

We next obtain an adjusted performance value with respect to each criterion by the
following expression within the maximum and minimum values of the above vector.

qki j =
tkji − minmi=1

[
tkji

]
+ δ

maxmi=1

[
tkji

]
− minmi=1

[
tkji

]
+ δ

. (7)

Here, we add a small value δ for normalization in order to avoid the zero performance
for further computation. In traditional TOPSIS, a small value δ is equal to 1 for the
worst value of the benefit criteria (Hwang and Yoon 1981). A normalized value is then
obtainable by linear or vector normalization as done by TOPSIS.

The adjusted performance values can be linear or vector normalized so that the
process is coherent with the traditional TOPSIS procedure. For vector normalization,
the equation is:

rki j = qki j√∑m
i=1 q

k
i j

. (8)

Here, i = 1, . . .,m; j = 1, . . ., n; k = 1, . . ., K . In such a way, the ordinal infor-
mation on the qualitative criteria can be transformed into cardinal information and
be integrated into the traditional TOPSIS process. Here, Eq. (8) provides a consistent
form of information as shown at Step 2 of Shih et al. (2007).

It is quite common for DMs to only provide ordinal information on the weight
of each criterion. We choose ROC weights, an approximating weight set, because of
their simplicity (Edwards and Barron 1994). Given the ranks of criteria are w1 =
w2 = . . . = wn > 0 for n criteria, the weight of j th criterion can thus be calculated as
follows.
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w j (ROC) = 1

m

m∑
i= j

(
1

i

)
, (9)

where j = 1, . . ., n by a descending rank order and
∑n

j=1 w j = 1.
Note that the weights of the criteria depend on their ranks, and their values have no

difference for any member in the group. Compared to Step 4 of Shih et al. (2007), we
can re-define the weight w j = w1

j = w2
j = . . . = wk

j , for criterion j = 1, . . ., n and
for each DM k = 1, . . ., K .

Edwards and Barron (1994) offered ROC weights by the number of criteria up to
16. For the case of four criteria, their weights are 0.5208, 0.2708, 0.1458, and 0.0625,
respectively, in a descending ranked order and without a tie. If the second and the third
ranks are a tie, then based on the concept of corner points with duplicated points at the
tie, the modified weights are 0.4792, 0.2292, 0.2292, and 0.0625, respectively, after
modifying Eq. (9). These default weights are considered for further operation. As the
extra routine has now been outlined, we will integrate the operation into the proposed
procedure in Sect. 3.3.

3.2 Group Aggregation with Differentiated Decision Power

The influence or power of one member on the other in a group or an organization is
this paper’s interest. The power is usually implicitly expressed in a group and can be
many types (Griffin andMoorhead 2013). However, it is uneasy to quantify the power.
As Baucells and Sarin (2003) proposed a group utility function, group preference
can be aggregated from individuals’ utility functions. Following the same stream, a
differentiated power can be thought of as another kind of weight to the individual’s
utility function. In group TOPSIS, Shih et al. (2007) considered group measures or

utility, S+
i and S−

i , as aggregates of the separation measures or individuals’ utilities
of each DM, Sk+i and Sk−i , k = 1, . . ., K , respectively, by taking the geometric or
arithmetical means of these values without considering differentiated decision power.
A simplifiedmodification is suggested by the following aggregation operations on two
separation measures of the group:

S+
i =

(
u1 ⊕ S1+i

)
⊗ . . . ⊗

(
uK ⊕ SK+

i

)
, for alternative i, and (10)

S−
i =

(
u1 ⊕ S1−i

)
⊗ . . . ⊗

(
uK ⊕ SK−

i

)
, for alternative i. (11)

Here, uk, k = 1, . . ., K , is the decision power of DM k by his or her relative weight,
and

∑K
k=1 u

k = 1, which can be obtained through a predetermined way (Ramanathan
and Ganesh 1994). The greater the value of the weight is, the more power the decision
maker has in the group. A DM with greater weight also means that he or she seems to
possess more influence than others on the final decision of the group.
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There aremany choices in the operation of internal aggregation, e.g., weighted arith-
metic mean, weighted geometric mean, or other modifications. If we take a weighted
arithmetic mean of all individual measures, then the group measures, Eqs. (10) and
(11), from PIS and NIS are:

S+
i =

(
K∑

k=1

uk Sk+i

) /
K , for alternative i, and (12)

S−
i =

(
K∑

k=1

uk Sk−i

) /
K , for alternative i, (13)

where i = 1, . . .,m; k = 1, . . ., K . If the weighted geometric mean is considered,
then the group measures from PIS and NIS are:

S+
i =

K∏
k=1

(
Sk+i

)uk
, for alternative i, and (14)

S−
i =

K∏
k=1

(
Sk−i

)uk
, for alternative i. (15)

In the following the final ranking is determined by the group relative closeness, as
a group preference, of the i th alternative Ai :

C∗
i = S−

i

S+
i + S−

i

, i = 1, . . .,m, (16)

where 0 ≤ C∗
i ≤ 1. The larger the index value is, the better the rank of the alternative

will be.
We note that all efforts attempt to obtain the composited separation measures,

including ordinal information and group information aggregation. Thus, the proposed
procedure is uniformly coherentwith the traditional TOPSIS steps and keeps a straight-
forward procedure.

3.3 Proposed Procedure

Based on the developments of the above two sections, we modify the procedure of
group TOPSIS of Shih et al. (2007) as follows.

Step 1 Construction of mixed-data decision matrix individually, Eq. (1).
(1.1) Acquisition of cardinal and ordinal performance information.
(1.2) Transformation of the ordinal performance to be the adjusted
performance, Eqs. (3)–(7).

Step 2 Construction of normalized decision matrix individually.
Step 3 Determination of PIS/NIS individually.
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Step 4 Assignment of weights to the criteria individually.
(4.1) Elicitation of the weights from the importance of the criteria.
(4.2) Processing the importance numerically directly from comparisons or
ranks.

Step 5 Determination of decision power for all group members.
(5.1) Assignment of members’ weights to all members by a supra decision
maker or by participants under an agreement.

Step 6 Calculation of separation measure from PIS/NIS for the group, Eqs. (10)–(15).
Step 7 Calculation of relative closeness for the group, Eqs. (16).
Step 8 Ranking and selection of preferable alternative(s).

(8.1) Ranking of all alternatives.
(8.2) Examination of the preferable alternative(s) and screening them out if
the alternative(s) are questionable.
(8.3) Selection of preferable alternative(s).

We can see that one major difference is Step 5 being added for processing the
decision power among the group members. Some minor modifications are also shown
at Steps 1, 4, and 8. In addition, an assumption is implicitly presented in the procedure
that all group members are willing to obtain a compromised or consensus resolution.
If the group members here do not agree with the resolution, then extra effort is needed
to reach a consensus by some techniques of group decision making (Hwang and Lin
1987), e.g., the Delphi technique. Some decision support systems can also facilitate
such a consensus, e.g., Shih et al. (2004).

4 Illustrative Examples

Two group decision examples are illustrated as follows. Example 1 demonstrates the
example of fighter selection by various combinations of the parameters. Example 2
presents a case of personnel recruitment. We also show the original fighter selection
problem (Hwang and Yoon 1981) with ordinal information on subjective criteria in
“Appendix” for ease of tracing the proposed procedure.

Example 1 A fighter selection problem (Hwang and Yoon 1981)

Four alternatives are evaluated by six criteria for the selection. Table 2 shows the
detailed information after adding oneDM.The different evaluations between twoDMs
are on the last two criteria, which are subjective with different level ordinal perfor-
mances. The first decisionmaker keeps the original five levels ofmeasurement, and the
second one only uses three levels of measurement. These measurements are handled
by Eqs. (3)–(8). Here, we assume equal decision power for both DMs and employ
the weighted arithmetical mean to aggregate the preferences of both DMs in which
decision power u1 = u2 = 0.5 for Eqs. (12) and (13). The rank results are tabled
by three sets of weights on the criteria—the given weights from the original exam-
ple, equal weights, and the ordinal weights from ROC—with vector normalization on
performance measures as shown in Table 3. In its three sub-tables, each has 18 com-
binations of ranks that are classified by different group aggregations, i.e., geometric
and arithmetical means and Borda function, Minkowski’s L p metric parameters (p=1,
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Table 4 Sensitivity analysis on the differentiated decision power of the two DMs in the fighter selection
example

Rank

Alternatives

A1 1 2 2 2 2 2 2 2 2

A2 4 4 4 4 4 4 4 4 4

A3 2 1 1 1 1 1 1 1 1

A4 3 3 3 3 3 3 3 3 3

Weights

DM#1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

The results are under vector normalization, ordinal weights on criteria, weighting after PIS/NIS, L p metric
with p = 2, and weighted arithmetic mean of the two DMs for differentiated decision power

2, and ∞), and by different weighting steps, whereby before the PIS/NIS calculation
as traditional TOPSIS (Hwang and Yoon 1981) is marked as “before”, and after the
PIS/NIS calculation whose weights are given to the calculation of separationmeasures
(Shih et al. 2007) is marked as “after”.

We see that the ranks are rather stable in terms of the three weight sets under
the aggregation by geometric and arithmetical means, but the results from the Borda
function seem to show not much discrimination ability here, as 14 cases out of 18
have ties. This could be one advantage of the internal aggregation of TOPSIS instead
of the external aggregation by the Borda function. In addition, aside from the case of
p = ∞, the ranks are stable under the same combinations across the three weight sets.

To understand the effects of theweights on the criteria and otherweights on decision
power, we execute two sensitivity analyses. The former deals with the weight change
on the criterion of maneuverability, whose weight is 0.3611 from ROC, with the
range of ±40%. Under the conditions of considering geometric mean aggregation,
weighting the step after PIS/NIS calculation, and metric parameter p = 2, the ranks
of alternatives are A3 � A1 � A4 � A2 and are unchanged within the range. The
ranks from the Borda function are A3 ≈ A1 � A4 � A2, within the range −10 to
40%, and their ranks switch to the previous ranks during the range −20 to −40%.
The latter inspects the effect of the weight changes on decision power in which DM#1
holds weights of 0.9 decreasing to 0.1. The basic condition of the combinations is to
maintain the same as the former. The ranks of alternatives are A3 � A1 � A4 � A2,
within the range of weights from 0.8 decreasing to 0.1, and the ranks of alternatives
are A1 � A3 � A4 � A2 with the weights being 0.9 as shown in Table 4. With this
small example, the presented results of the proposed model are stable.

Example 2 A personnel recruitment problem.

A semiconductor corporation is extending its business by selling its newly-
developed light-emitting diode (LED) components to lighting and othermanufacturers
of LED products. The sales and marketing department of the corporation initializes a
recruitment of two sales engineers to promote the new business. After a screening
process on the applications, 15 candidates remain on the final list for an inter-
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view in the second stage. The interview evaluation includes four dimensions with
the items they belong to in the corresponding parentheses: knowledge (management
and specialty), skills (communication, expressiveness, problem-solving, and analytic),
behavior (team-work and customer-oriented), and personal characteristics (vigor, con-
fidence, compressive resistance, and integrity). Since these 12 items are difficult to
evaluate by cardinal information, e.g., 0–100 scores, interval values are used with
some limited levels for ease of evaluation. The human resources department (HR)
wants to introduce a new evaluating system to fit the company’s needs. For ease of
manipulation, HR sets up ordinal data by five levels for the interview evaluation, and
our proposed approach satisfies the firm’s needs. Table 5 lists the evaluation sheet of
the 15 candidates on the 12 items by two managers from the employing unit (EU)
and HR, respectively. The weights of the evaluating items or criteria are tested by the
given criteria weights from AHP, equal weights, and ROC weights.

For a group decision, it is not easy to define the decision power for both departments
to reflect their expertise. The final decision relies heavily upon the evaluation of the
EU, because the candidateswill work for that unit later, but the opinion ofHR ismainly
as a reference for the decision makers. However, HR does keep veto power on the final
decision if any preferable candidate has an unethical or unacceptable behavior in the
past (at Step 8 of the proposed procedure). In our case, they agree on EU obtaining
a weight of 0.8 and HR obtaining the rest after a long and tedious discussion, as
mentioned at Step 5.

Table 6 presents a comparison of group ranks for the case from 18 × 3 combina-
tions, i.e., three weight sets for criteria, weighted geometric or arithmetic means for
differentiated decision power, L p metric parameters (p = 1, 2, and∞), and a weight-
ing step before or after PIS/NIS calculation, and all combinations are under vector
normalization and EU is assigned the decision power of 0.8. We also list the results
of external aggregation by the Borda function for comparison, and the differentiated
decision power is inapplicable to the function.

Based on the shown results, Candidate A11 should be the best one without much
debate, but the second one shows a little bit of diversity. Candidate A5 or A10 could be
the second best, while Candidate A5 is selected due to stable ranks among the different
combinations. Furthermore, we see some unexpected results with metric parameter
p = ∞ under aggregation by the geometric mean. This is caused by the zero value
of separation measures, i.e., the alternatives are at PIS or NIS, and the geometric
mean does not work well. In addition, the metric parameter p = ∞ also gives us
slightly inconsistent results. This manipulation takes an extreme value from multiple
dimensions, and the other decision information is almost neglected. It easily makes
the candidates less discriminated under full ordinal information. We would suggest to
avoid taking metric parameter p = ∞ as a choice in using TOPSIS evaluation. From
the same table, we find that the results aggregated from the Borda function have many
ties, which are not good for our evaluation.

To illustrate the effect of differentiated power on the final decision, we execute
a sensitivity analysis on the unequal decision weights for both departments using
Eqs. (12) and (13) and consider the weighted arithmetical mean for the aggregation
in which EU takes a weight from 0.5 (equally shared decision power between EU
and HR) to 0.95 (major decision by EU). The results in Table 7 are based on ordinal
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Table 7 Sensitivity analysis on the differentiated decision power of the two DMs (EU and HR)

Rank

Candidates

A1 13 13 13 13 13 13 13 13 13 15

A2 5 5 6 6 7 7 7 7 7 7

A3 12 12 12 12 12 12 12 12 12 12

A4 3 3 3 3 3 3 4 5 5 5

A5 2 2 2 2 2 2 2 2 2 2

A6 10 10 10 9 9 9 9 9 9 9

A7 11 11 11 11 11 11 11 11 11 11

A8 6 6 5 4 4 4 3 3 4 4

A9 4 4 4 5 5 6 6 6 6 6

A10 8 8 8 8 6 5 5 4 3 3

A11 1 1 1 1 1 1 1 1 1 1

A12 15 15 15 15 15 15 15 15 14 13

A13 7 7 7 7 8 8 8 8 8 8

A14 9 9 9 10 10 10 10 10 10 10

A15 14 14 14 14 14 14 14 14 15 14

Weights

EU 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

The results are under vector normalization, ROCweights on the criteria, weighting after PIS/NIS, L p metric
with p = 2, and weighted arithmetic mean of EU and HR for differentiated decision power

weighting on the criteria, L p metric p = 2, and vector normalization. Although there
are 15 candidates, the ranks of the leading two candidates are unchanged. The case
demonstrates that our proposed approach is stable for the problem. In the end, the case
company is satisfied with the proposed model for making better judgments without
using cardinal scores.

5 Discussions

Based on the analyses of the two examples, we now offer some discussions on ordinal
information, score conversion, group aggregation, and decision power, with some
limitations.

5.1 Ordinal Information

The ordinal information provided for decision making has no need for assumptions on
the equality of the ordinal intervals or levels and the units of measurement (Coombs
1950). The processed information can include some defined categories in a partial
order set for the performance measure. We think the proposed model is rather flexible
as shown in Example 1 with ordinal data of three levels and five levels. The settings
of different levels do not also generate distinguishable rank results in the example.
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One might argue why not just directly transfer the ordinal information into car-
dinal information as in Hwang and Yoon (1981). In fact, such an assignment would
incur a subjective measure in which the values and their intervals might not be rep-
resented very well. It seems that they force partial information to be complete before
the TOPSIS process. This transformation could be distorted due to a scaling effect or
inappropriate assignment. In addition, such a subjective measure should be serious in
a group decision making environment due to the multiple heterogeneous preferences.
Different attitudes of DMs, e.g., conservative or liberal, will make the subjective mea-
sure more complicated. It is worth it to make direct use of ordinal information at the
cost of extra computation.

The concept of approximating weights based on ranks is an attempt to divert the
difficulties of weight elicitation in MCDM problems. The basis in using such weights
is that DMs can differentiate among rank positions by reflecting their preferences
(Ahn and Choi 2012), and the ordinal weights are applicable after the establishment
of these weak preference relations on the criteria. For various ordinal weights, Barron
and Barrett (1996) examined four approximate rank-order weights and found that
ROC weights are the most accurate. Roberts and Goodwin (2002) classified weight
elicitation methods as three categories—direct rating, point allocation, and ranking—
and pointed out that ROC weights are appropriate to use as a substitute for point
allocation methods, but the ROC weights do not provide the best approximation to
the original weights in direct rating methods. On this point, they proposed rank order
distribution (ROD) weights for a better approximation, and ROD weights will be
close to the rank sum weights as the numbers of criteria increase. Ahn (2011) also
confirmed that ROC weights result in the highest performance in MCDM evaluation.
Though there are some debates on which one is the best, we divert the debates by
executing extra sensitivity analyses on ROC weights to show the stability on rankings
of our proposed model.

5.2 Score Conversion

In Sect. 3, Eqs. (7) and (8) are derived for converting an ordinal performance mea-
sure into a cardinal performance measure based on the frequency of dominating and
dominated cases of any qualitative criterion by pairwise comparison among alterna-
tives. It is common to count the frequency of the superior and inferior situations as
EVAMIX. EVAMIX utilizes two weighting steps: the first one posts criterion weights
into dominating and dominated cases for obtaining dominance scores; and the second
one uses the weights of qualitative and quantitative criteria to combine the correspond-
ing standardized dominance scores into the total standardized dominance scores for
the final ranking. On the other hand, the core of TOPSIS is to count PIS/NIS by a
distance function. We try to keep the core in the TOPSIS extension so that the conver-
sion process on an ordinal measure is rather simple. Following the TOPSIS procedure,
Eq. (8) can be thought of a vector normalization process. After the converted data of
qualitative criteria have the same style as that of the quantitative criteria with vector
normalization, PIS/NIS becomes obtainable for further use.
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5.3 Group Aggregation

When using MCDM techniques in group decision making, there will be an extra
consideration on how to aggregate the group preference. It is assumed that the group
can achieve an agreement orwork in a cooperative environment so that a consensus can
be reached (Bezerra et al. 2014). This study takes advantage of Baucells and Sarin’s
work (2003) for the development, and some common operators can be employed. The
operator of arithmeticmeanhas a sense of an equal distance to allmembers in the group,
whereas the operator of geometricmean considers an equal ratio to allmembers (Medhi
2006). The latter is a better fit to normalized results and is especially good for AHP
(Forman and Peniwati 1998). After checking the results of both examples, we perceive
that rank ties frequently occur by external aggregation of the Borda function. It seems
that the discrimination ability of the external aggregation in TOPSIS is questionable if
wewant to have a total differentiated rank. This can be considered as one advantage for
internal aggregation of TOPSIS in our proposed model. Though the geometric mean is
rather common for the aggregation in AHP (Ramanathan and Ganesh 1994), it appears
to not work well for the case with full ordinal performance measures, because some
measures are easy to reach the points of PIS or NIS. Thus, the generated zero value
in the denominator undermines the relative closeness.

There are various issues on aggregating individual preferences from a technical
aspect. We do not provide an operation that is involved in the preference variations
among a large number of group members, as it is difficult to reach an agreement.
Please check the contents of Huang and Li (2012) for details.

5.4 Decision Power

There indeed exists differentiated decision power in the real world, such as business
and political organizations, yet formulating the power with differentiation is a big
issue. The power is usually implicitly expressed in a group with many types (Griffin
and Moorhead 2013). Since there is no explicit clue from the area of organizational
behavior, we refer to Ramanathan and Ganesh’s work (1994) and extend it to the
group utility function of Baucells and Sarin (2003) to aggregate individuals’ utility
functions with differentiated decision power. Other elegant ways to formulate the
decision power could be left for future study. In addition, it is possible that there exist
conflicts or regrets regarding decision power, meaning a consensus cannot be reached.
Extra work is needed for consensus facilitation.

Ramanathan and Ganesh (1994) also indicated two approaches for assigning
weights of the decision power. In our case study, the participatory approach to deter-
mine weights is feasible by interpersonal pairwise comparison or discussions among
the group members. The features of the job statement for the candidate position can be
thought of a basis for predetermining the weights of the power among different units.
It is worth noting that social choice functions, e.g., the Borda function, are usually not
involved in differentiated decision power.

For the personnel recruitment problem, HR keeps a veto power on the final decision
if the target candidate has any unethical or unacceptable behavior in the past. If his or
her bad record cannot be found in the screening process, then HR will demonstrate its
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veto power later, even during the probation period or later on. This situation cannot
be covered in our model. Moreover, for the selection of senior managers the refer-
ence check plays a vital role on the final decision. That means that our model can
be quite applicable to junior positions, whose decisions heavily rely on candidates’
performances.

6 Concluding Remarks

This study has proposed a decision support model to manage the mixed-data model
with differentiated decision power for group TOPSIS. We integrate ordinal and car-
dinal information with differentiated weights into the traditional TOPSIS steps based
on DMs’ distance-based utilities. The suggested model maintains a straightforward
procedure like the original TOPSIS does. The illustrated examples demonstrate that
our approach is useful in a cooperative group decision making environment. From the
viewpoint of group aggregation, the proposed model with internal aggregation has an
edge over the Borda function for external aggregation in group TOPSIS, achieving
better discrimination ability. Sensitivity analysis also demonstrates the robustness of
the model on alternative ranks.

After testing 54 combinations of different parameters on three weight sets on the
criteria, group aggregation, two different weighting steps, and three L p metric para-
meters for group TOPSIS, the fighter selection example performs quite stable with two
sets of rankings, but the personnel recruitment case with p = ∞ for the L p metric
gives slight different rank results when dealing with full ordinal performance informa-
tion. In addition, the recruitment case with full ordinal data shows us that aggregating
group preferences by geometric mean seems inadequate, because it has little ability
to process a zero value under metric p = ∞. Though there exists a slight distortion
on using vector normalization of TOPSIS (Kaliszewski et al. 2014), we do not notice
its effect on the final ranks.

The core concept of the proposed decisionmodel withmixed data and differentiated
decision power can be extended to other cardinal MCDM techniques in a group deci-
sion environment. In this study we have not dealt with stochastic dominance in group
TOPSIS or with incomplete decision information.We also do not take into account the
heterogeneous preferences for a large number of DMs as well as conflicts or regrets
regarding decision power or weights on the criteria. These types of problems could be
left for future study.
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Appendix: Comparison Results of the Fighter Selection Problem with
Ordinal Information

Example 3 A fighter selection problem (Hwang and Yoon 1981).
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Four alternatives are evaluated by six criteria for the selection problem and the
decision information is illustrated in Table 2 with partial information. Please delete
the left two columns on the subjective criteria of DM #2 for this example with a
single DM. The analysis is based on four combinations. The first one is related to
traditional TOPSIS steps, converting ordinal performances by pre-determined 0–10
scales, and to our proposed steps, comparing ordinal information by different levels
using Eqs. (4)–(8). The second one deals with two weighting processes that are on
the normalized decision matrices (marked “before” whose weights are used before
PIS/NIS calculation as in traditional TOPSIS) or the separation measures (marked
“after” whose weights are combined with the separation measures, after PIS/NIS
calculation, as detailed in Step 5a of Shih et al. (2007). The third one includes three
common Minkowski’s L p metric parameters, i.e., p = 1, p = 2, and p = ∞. The
fourth one concerns three weight sets: the given weights, equal weights, and ordinal
weights. Table 8 lists the rank results, which are separated by three sub-tables with
different weight sets. All information in the table is derived by vector normalization
on performance measures from Table 2. The last column of Table 8 gives the rank
results by EVAMIX for the purpose of comparison.

According to the results, we first observe that the ranks of the four alternatives by
our approach for ordinal information are rather stable compared to traditional TOPSIS.
We believe that the proposed pairwise comparison provides better discriminating abil-
ity than traditional TOPSIS. Second, the weighting step on the normalized decision
matrices or on the separation measures does not have much effect on the proposed
approach; however, it has a slight effect on the traditional approach. Third, the differ-
ence L p metric parameters also have a slight effect on the traditional approach, but not
much impact on the proposed approach. Fourth, the ordinal weight set provides the
most stable ranks, confirming the results of Barron and Barrett (1996). Compared to
the ranks from EVAMIX, TOPSIS provides more similar ranks under the given weight
set.
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